The 3rd South Lake Innovation Forum for International Young Talents

Transition-Metallocarbene Mediated Tandem Cyclization Reactions and Polynuclear Gold Clusters Synthesis

Dr. Jin-Ming Yang (杨金明) 博士导师: Min <u>Jyang@iciq.es</u> Shi (施敏) 研究员 (SIOC) 博后合作导师: Antonio M Echavarren (ICIQ)

05-12-2018

Institute of Chemical Research of Catalonia (ICIQ)

איאָע וC**IQ** יי

Institute of Chemical Research of Catalonia (ICIQ)

.≁₩¢ ICIQ9

Institute of Chemical Research of Catalonia (ICIQ)

IC**IO**∄ ⁺५२२

Outline

- Background
- 1) Rhodium-carbene Mediated Heterocycles Synthesis
 - > Rhodium(II)-catalyzed intramolecular annulation of 1-sulfonyl-1,2,3-triazoles with pyrrole and indole rings
- 2) Gold-carbene Mediated Tandem Cyclization Reactions
 - **Gold(I)-Catalyzed Highly Stereoselective Synthesis of Polycyclic Indolines**
 - Gold(I)-catalyzed intramolecular cycloisomerization of propargylic esters with furan rings
- 3) Polynuclear Gold Clusters Synthesis
- Research Summary
- Acknowledgements

Triazoles

Gulevich, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed. 2013, 52, 1371-1373.

אאָלי וC**IO**∎

Transformations of Triazoles

(a) Gulevich, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed. 2013, 52, 1371-1373. (b) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151-5162.

1) Rhodium-carbene Mediated Heterocycles Synthesis

Rh is one of the most popular catalysts for cycloaddidtion, Pauson-Khand reaction and C–H activation

Parr, B. T.; Green, S. A.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 4716-4718.

1) Rhodium-carbene Mediated Heterocycles Synthesis

744r

Intermolecular annulation of indoles (Davies's work)

Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6802-6805.

אאָלי וC**IO**∎

1) Rhodium-carbene Mediated Heterocycles Synthesis

H a RhL_n N=N RhL_n, 80 °C annulation \mathbf{R}^{1} zwitterionic R^2 N_2 $X = NTs, CH_2, O.$ R^2 V-A V-B a: 1,2-H shift or migration b: C-H functioniaztion Versatile for further transformations L_nRh Path b $\mathsf{RhL}_{\mathsf{n}}$ ニン ビニン \mathbf{R}^2 V-C V-D R^2 High chemoselectivity (path b only)! Easy-to-handle functional groups! Wide azepine ring flexibility (N, O, C)!

Intramolecular annulation of pyrroles and indoles (This work)

Yang, J.-M.; Zhu, C.-Z.; Tang, X.-Y.*; Shi, M.* Angew. Chem. Int. Ed. 2014, 53, 5142-5146.

1) Rhodium-carbene Mediated Heterocycles Synthesis

Yang, J.-M.; Zhu, C.-Z.; Tang, X.-Y.*; Shi, M.* Angew. Chem. Int. Ed. 2014, 53, 5142-5146.

Optimization of the reaction conditions

Bs-N	NN N N Te	t. (5 mol %) 0 °C, 2 h	NHTs	TsHN
 V-1a	2) then NaBH RT, ov	^E ₃ CN (2.0 equiv) vernight	V-2a	Bs-N N V-2a'
entry ^a	Rh(II)-cat.	solvent	yield (%) ^b	TsHN
1	Rh ₂ (Oct) ₄	DCE	86	
2	Rh ₂ (Piv) ₄	DCE	80	
3	Rh ₂ (esp) ₂	DCE	77	
4	Rh ₂ (OAc) ₄	DCE	78	$(F) V_2a' X_ray$
5	Rh ₂ (Adc) ₄	DCE	80	
6	Rh ₂ (tfa) ₄	DCE	0	
7	Rh ₂ (S-NTTL) ₄	DCE	70	
8	Rh ₂ (Oct) ₄	toluene	78	
9	Rh ₂ (Oct) ₄	cyclohexane	_c	
10	Rh ₂ (Oct) ₄	CHCl ₃	_c	

^{*a*} Reaction conditions: 0.1 mmol of **V-1a**; 5 mol% of cat.; 1.0 mL of dry solvent. ^{*b*} Isolated yields. ^{*c*} undetermined. DCE =1,2-dichloroethane.

Substrate scope

Reaction conditions: 0.1 mmol of V-1; 5 mol % of $Rh_2(Oct)_4$; 1.0 mL anhydrous DCE. Isolated yields.

Substrate scope

^{*a*} Reaction conditions: 0.1 mmol of **V-3**; 5 mol % of $Rh_2(Oct)_4$; 1.0 mL anhydrous DCE. Isolated yields. ^{*b*} Substrates were performed only in the first step, and the two isomers were not reduced. ^{*c*} **V-4I''** was obtained in 43% yield.

V-4I''

Further transformations of the products

Kinetic isotope effect study

אאָלי אאַלי

Substrate scope

Propargylic Esters

.≁₩¢ ICIQ9

Wang, S.; Zhang, G.; Zhang, L. Synlett 2010, 692-706.

۲^۳^۳ اد**ام** [1,2]-Migration

(a) Miki, K.; Ohe, K.; Uemura, S. *Tetrahedron Lett.* **2003**, *44*, 2019-2022. (b) Miki, K.; Ohe, K.; Uemura, S. *J. Org. Chem.* **2003**, *68*, 8505-8513.

Mamane, V.; Gress, T.; Krause, H.; Fürstner, J. Am. Chem. Soc. 2004, 126, 8654-8655.

Rao, W.; Susanti, D.; Chan, P. W. H. J. Am. Chem. Soc. 2011, 133, 15248-15251.

אאָלי אאַלי

Gold(I)-Catalyzed Highly Stereoselective Synthesis of Polycyclic Indolines

(a) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804-16805. (b) Zhang, G.; Catalano, V. J.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358-11359.

יאאָלי וC**IO**∎

Gold(I)-Catalyzed Highly Stereoselective Synthesis of Polycyclic Indolines

Optimization of the reaction conditions

TsN 1a	OPiv <u>catalyst (x mol%)</u> solvent, RT TsN		H + (SN H	N 3a X-	Ray
entry ^[a]	catalyst (x mol%)	solvent) time	yield	(%) ^[b]
		Solvent	1 1 ₂ 0 (y eq.) une	2 a	3a
1	[Au(tBuXPhos)][OTf] (5)	DCE	-	2 h	95	0
2	[Au(Me ₄ tBuXPhos)(CH ₃ CN)][SbF ₆] (5)	DCE	-	6 h	0	0
3	[(IPr)Au(CH ₃ CN)][SbF ₆] (5)	DCE	-	2 h	0	70
4	[Au(<i>n</i> BuPAd ₂)(CH ₃ CN)][SbF ₆] (5)	DCE	-	4 h	0	89
5	[(ArO) ₃ PAu][NTf ₂] (5)	DCE	-	4 h	0	70
6	[(IPr)Au(CH ₃ CN)][SbF ₆] (5)	DCE	1.0	2 h	0	85
7	[Ph ₃ PAuCl] (5)/AgNTf ₂ (5)	DCE	1.0	1 h	0	74
8	[(IPr)Au(CH ₃ CN)][SbF ₆] (2.5)	DCE	1.0	5 h	0	86

[a] All reactions were carried out using **1a** (0.1 mmol) in the presence of catalyst (x mol%) in DCE (1.0 mL) unless otherwise specified. [b] Isolated yields. Ar = 2,4-di-tert-butylphenyl. DCE = 1,2-dichloroethane.

Substrate scope

[a] Reaction conditions: **1** (0.1 mmol); [Au(*t*BuXPhos)][OTf] (5 mol%); anhydrous DCE (1.0 mL). Yields are those of the isolated yields. [b] 2.5 mol% of [(IPr)Au(CH₃CN)][SbF₆] was used as the catalyst.

Substrate scope

Reaction conditions: 1 (0.1 mmol); [(IPr)Au(CH₃CN)][SbF₆] (2.5 mol%); H₂O (1.0 equiv); anhydrous DCE (1.0 mL). Yields are those of the isolated yields. DCE = 1,2-dichloroethane.

Ligands for asymmetric synthesis

Optimization of the reaction conditions

	OPiv TsN <u>catalyst</u> solvent, H	: (x mol%) I₂O (1.0 e	<mark>→</mark> O quiv) Tŧ	O V	OH H	
	1a			3a		
entry ^[a]	catalyst (x mol%)	solvent	T (°C)	time	yield (%) ^[b]	ee (%) ^[c]
1	[L1 AuCl] (5)/AgSbF ₆ (5)	DCE	RT	1 h	74	0
2	[L2 Au ₂ Cl ₂] (5)/AgOPNB (5)	DCE	RT	2 d	trace	_[d]
3	$[L2Au_2Cl_2]$ (5)/AgSbF ₆ (5)	DCE	RT	2 h	72	0
4	$[L3Au(CH_3CN)][SbF_6]$ (5)	DCE	RT	3 h	85	40
5	$[L4Au_2(CH_3CN)_2][(SbF_6)_2](5)$	DCE	RT	3 d	67	15
6	[L5 Au(CH ₃ CN)][SbF ₆] (5)	DCE	RT	1 h	86	71
7	[L5 AuCl] (5)/AgNTf ₂ (5)	DCE	RT	3.5 h	79	71
8	[L5 AuCl] (5)/AgNTf ₂ (5)	Toluene	RT	4 h	23	47
9	[L5 Au(CH ₃ CN)][SbF ₆] (5)	DCM	RT	1 h	87	67
10	[L5 Au(CH ₃ CN)][SbF ₆] (5)	CHCl ₃	RT	5 h	85	50
11	[L5 AuCl] (5)/AgBF ₄ (5)	DCE	RT	45 min	65	31
12	[L5 AuCl] (5)/AgSbF ₆ (5)	DCE	RT	4 h	77	14
13	[L5 AuCl] (5)/AgOTf (5)	DCE	RT	4 h	trace	_[d]
14	[L5 AuCl] (5)/AgOONB (5)	DCE	RT	4 d	trace	_[d]
15	[L6 Au(CH ₃ CN)][SbF ₆] (5)	DCE	RT	6 h	55	-7
16	[L7 Au ₂ Cl ₂] (5)/AgSbF ₆ (10)	DCE	RT	5 h	67	2
17	(a <i>R</i>)- 8 (5)/AgSbF ₆ (5)	DCE	RT	30 min	79	0
18	[L9 AuCl] (5)/AgNTf ₂ (5)	DCE	RT	4 h	78	-17
19	[L10 AuCl] (5)/AgNTf ₂ (5)	DCE	RT	22 h	77	43
20	[L11 AuCl] (5)/AgNTf ₂ (5)	DCE	RT	2 h	84	52
21	[L12 AuCl] (5)/AgNTf ₂ (5)	DCE	RT	18 h	69	-46
22	[L13 AuCl] (5)/AgNTf ₂ (5)	DCE	RT	1.5 h	72	27
23	[L5AuCl] (5)/AgNTf ₂ (5)	DCE	0	16 h	72	77

[a] All reactions were carried out using **1a** (0.1 mmol) in the presence of catalyst (x mol%) in various solvents (1.0 mL) unless otherwise specified. [b] Yield of isolated product. [c] Determined by HPLC on a chiral stationary phase. [d] Not determined. OPNB = p-nitrobenzoate, OONB = o-nitrobenzoate

,₩¥¥ IC**IQ**9

Substrate scope

X 1	OPiv	[L5 AuCl] (5 mol%) AgNTf ₂ (5 mol%) DCE, H ₂ O (1.0 equiv),	0°C		H H R	(S _a ,R,R)-L5	Ph P-N Ph
entry ^[a]	1	Х	R	time	3	yield	ee
				[days]		[%] ^[b]	[%] ^[c]
1	1b	2-MeC ₆ H₄SO ₂ N	Н	3	3b	30	74
2	1c	3-MeC ₆ H ₄ SO ₂ N	Н	2	3c	60	80
3	1d	PhSO ₂ N	Н	2	3d	43	90
4	1e	MesSO ₂ N	Н	2	3e	51	83
5	1f	2,4,6- ⁱ Pr ₃ C ₆ H ₂ SO ₂ N	Н	2	3f	40	91
6	1h	TsN	5-Me	2	3h	50	74
7	1i	TsN	6-Me	0.5	3i	46	71
8	1j	TsN	7-Me	2	Зј	88	81
9	1k	TsN	5-OMe	2	3k	62	82
10	11	TsN	6-F	0.5	31	72	82
11 ^[a]	1m	TsN	5-Br	2	3m	66	62
12	1n	TsN	6-Br	1	3n	85	82
13	10	TsN	6-Cl	3	_	_[e]	_[e]
14	1р	0	Н	3	3р	30	72
15	1q	CH ₂	Н	3	3q	25	60

[a] Reaction conditions: **1** (0.1 mmol), [**L5**AuCl] (5 mol%), AgNTf₂ (5 mol%), H₂O (1.0 equiv), anhydrous DCE (1.0 mL). [b] Yields are those of the isolated yields. [c] Determined by HPLC on a chiral stationary phase. [d] Reaction performed at room temperature. [e] Complex mixtures, not determined. DCE=1,2-dichloroethane.

The control experiments

.≁₩¥

The control experiments

۲^۳^۳ CIQ⁹ *A plausible mechanism*

יאאַלי וC**IO**∎

Gold(I)-catalyzed intramolecular cycloisomerization of α -yne furans

substituent and tether control the reaction pathway!

אאָלי וC**IO**∎

Gold(I)-catalyzed intramolecular cycloisomerization of α -yne furans

Yang, J.-M.; Tang, X.-Y.*; Shi, M.* Chem. – Eur. J. 2015, 21, 4534-4540.

Polynuclear Gold Clusters Synthesis

Smirnova, E. S.; Echavarren, A. M. Angew. Chem. Int. Ed. 2013, 52, 9023.

Polynuclear Gold Clusters Synthesis

Smirnova, E. S.; Molina, J. M. M.; Johnson, A.; Bandeira, N. A. G.; Bo, C., Echavarren, A. M. Angew. Chem. Int. Ed. **2016**, 55, 7487.

Polynuclear Gold Clusters Synthesis

7447

Smirnova, E. S.; Molina, J. M. M.; Johnson, A.; Bandeira, N. A. G.; Bo, C., Echavarren, A. M. Angew. Chem. Int. Ed. **2016**, 55, 7487.

بکنید اCIQ⁹ *Ligand synthesis*

(a) Ziessel, R. *Tetrahedron Lett.* **1989**, *30*, 463-466. (b) Catalano, V. J.; Kar, H. M.; Bennett, B. L. *Inorg. Chem.* **2000**, *39*, 121-127.

Polynucler gold clusters synthesis

Yang, J.-M.; Echavarren, A. M.* 2018, To be submitted.

Polynucler gold clusters synthesis

Yang, J.-M.; Echavarren, A. M.* 2018, To be submitted.

IC**IO**∄ ⁺₩₩

Polynucler gold clusters synthesis

Yang, J.-M.; Echavarren, A. M.* 2018, To be submitted.

Catalytic studies

744T

Entry ^[a]	Catalyst	Conv. [%] ^[b]	Yield [%] ^[b]			
			13	14	15	16
1	3, L ₂ Au ₄ R ₂ (BAr ^F ₄) ₂	100	85 (83)	0	10	1
2 ^[c]	4, L ₂ Au ₄ Cl ₂ (PF ₆) ₂	35	21	0	5	1
3	4, L ₂ Au ₄ Cl ₂ (PF ₆) ₂	100	58	0	18	0
4	5, L ₂ Au ₄ Cl ₂ (BF ₄) ₂	42	28	0	3	9
5	6, L ₂ Au ₄ Cl ₂ (SbF ₆) ₂	100	74	0	17	4
6	7, L ₂ Au ₄ Cl ₂ (OTf) ₂	100	22	0	23	0
7	8, [L ₂ Au ₄ Cl ₂ (NTf ₂) ₂] _n	100	14	27	29	0
8	10, LAu ₂ Ph ₂	0	0	0	0	0
9	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	100	63	0	35	0
10 ^[d]	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	90	54	0	20	2

[a] Reaction conditions : **12** (0.1 mmol), cat. (2 mol %), CH_2Cl_2 (1.0 mL). [b] Conversions and yields were determined by ¹H NMR spectroscopy using 1,4-diacetylbenzene as internal standard. Value within parentheses is that of the yield of the isolated product after column chromatography. [c] 1 mol % of **4**, reaction time: 3 h. [d] 0.5 mol % of **11**. L = 2,9-bis(diphenylphosphino)-1,8-naphthyridine (dppn). R = 3,5-(CF₃)₂C₆H₃. tmbn = 2,4,6-trimethoxybenzonitrile.

Catalytic studies

۲۹۵۲ ۲۹۵۳ ۲۹۵۳

		MeO ₂ C MeO ₂ C		+ MeO MeO	² C	\sim
MeO ₂ C MeO ₂ C	Catalyst (2 mol % CH ₂ Cl _{2,} r.t., 12 h 2) MeO ₂ C MeO ₂ C		+ MeO; MeO	14 2C	, Сон
		15			16	ι Ι
— . [a]	Catalvat	ri- 1	Yield [%] ^[b]			
Entry ^[a]	Catalyst	Conv. [%] ^[5]	13	14	15	16
1	3, L ₂ Au ₄ R ₂ (BAr ^F ₄) ₂	100	85 (83)	0	10	1
2 ^[c]	4, L ₂ Au ₄ Cl ₂ (PF ₆) ₂	35	21	0	5	1
3	4, L ₂ Au ₄ Cl ₂ (PF ₆) ₂	100	58	0	18	0
4	5, L ₂ Au ₄ Cl ₂ (BF ₄) ₂	42	28	0	3	9
5	6, L ₂ Au ₄ Cl ₂ (SbF ₆) ₂	100	74	0	17	4
6	7, L ₂ Au ₄ Cl ₂ (OTf) ₂	100	22	0	23	0
7	8, [L ₂ Au ₄ Cl ₂ (NTf ₂) ₂] _n	100	14	27	29	0
8	10, LAu ₂ Ph ₂	0	0	0	0	0
9	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	100	63	0	35	0
10 ^[d]	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	90	54	0	20	2

[a] Reaction conditions : **12** (0.1 mmol), cat. (2 mol %), CH_2Cl_2 (1.0 mL). [b] Conversions and yields were determined by ¹H NMR spectroscopy using 1,4-diacetylbenzene as internal standard. Value within parentheses is that of the yield of the isolated product after column chromatography. [c] 1 mol % of **4**, reaction time: 3 h. [d] 0.5 mol % of **11**. L = 2,9-bis(diphenylphosphino)-1,8-naphthyridine (dppn). R = 3,5-(CF₃)₂C₆H₃. tmbn = 2,4,6-trimethoxybenzonitrile.

₽₩₩ ₩₩₩

Catalytic studies

MeO ₂ C MeO ₂ C	$\begin{array}{c} \hline \\ \hline $	%) <u>%)</u> MeO₂C → MeO₂C	
17			18
Entry ^[a]	Catalyst	Conv. [%] ^[b]	Yield [%] ^[b]
1	3, L ₂ Au ₄ R ₂ (BAr ^F ₄) ₂	35	23
2 ^[c]	3, $L_2Au_4R_2(BAr_4)_2$	0	0
3 ^[d]	4, L ₂ Au ₄ Cl ₂ (PF ₆) ₂	0	0
4	4, L ₂ Au ₄ Cl ₂ (PF ₆) ₂	100	83 (77)
5	5, L ₂ Au ₄ Cl ₂ (BF ₄) ₂	100	81 (76)
6	6, L ₂ Au ₄ Cl ₂ (SbF ₆) ₂	100	75
7	7, L ₂ Au ₄ Cl ₂ (OTf) ₂	100	81 (74)
8	8, [L ₂ Au ₄ Cl ₂ (NTf ₂) ₂] _n	100	68
9	10, LAu ₂ Ph ₂	28	25
10 ^[d]	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	79	59
11	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	100	60
12	-	39 ^[e]	0

[a] Reaction conditions : **17** (0.1 mmol), cat. (1 mol %), AgNTf₂ (2 mol %), CH₂Cl₂ (1.0 mL). [b] Conversions and yields were determined by ¹H NMR spectroscopy using 1,4-diacetylbenzene as internal standard. Value within parentheses is that of the yield of the isolated product after column chromatography. [c] NaBAr^F₄ (2 mol %) was added instead of AgNTf₂. [d] Absence of AgNTf₂. [e] Partial decomposition of **17**. L = 2,9-bis(diphenylphosphino)-1,8-naphthyridine (dppn). R = 3,5-(CF₃)₂C₆H₃. tmbn = 2,4,6-trimethoxybenzonitrile.

⁺ኣቍቚ

Catalytic studies

MeO ₂ C	$\begin{array}{c} \hline \\ \hline $	$\xrightarrow{\%)}{MeO_2C}$ $\xrightarrow{MeO_2C}$	
			10
Entry ^[a]	Catalyst	Conv. [%] ^[b]	Yield [%] ^[b]
1	3, L ₂ Au ₄ R ₂ (BAr ^F ₄) ₂	35	23
2 ^[c]	3, $L_2Au_4R_2(BAr_4)_2$	0	0
3 ^[d]	4, $L_2Au_4Cl_2(PF_6)_2$	0	0
4	4, L ₂ Au ₄ Cl ₂ (PF ₆) ₂	100	83 (77)
5	5, L ₂ Au ₄ Cl ₂ (BF ₄) ₂	100	81 (76)
6	6, L ₂ Au ₄ Cl ₂ (SbF ₆) ₂	100	75
7	7, L ₂ Au ₄ Cl ₂ (OTf) ₂	100	81 (74)
8	8, [L ₂ Au ₄ Cl ₂ (NTf ₂) ₂] _n	100	68
9	10, LAu ₂ Ph ₂	28	25
10 ^[d]	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	79	59
11	11, L ₂ Au ₄ (tmbn) ₂ (SbF ₆) ₄	100	60
12	-	39 ^[e]	0

[a] Reaction conditions : **17** (0.1 mmol), cat. (1 mol %), AgNTf₂ (2 mol %), CH_2CI_2 (1.0 mL). [b] Conversions and yields were determined by ¹H NMR spectroscopy using 1,4-diacetylbenzene as internal standard. Value within parentheses is that of the yield of the isolated product after column chromatography. [c] NaBAr^F₄ (2 mol %) was added instead of AgNTf₂. [d] Absence of AgNTf₂. [e] Partial decomposition of **17**. L = 2,9-bis(diphenylphosphino)-1,8-naphthyridine (dppn). R = 3,5-(CF₃)₂C₆H₃. tmbn = 2,4,6-trimethoxybenzonitrile.

_יאאָלי וC**IO**∎

744Y

אאָלי אאַלי

74X

Acknowledgements

Prof. Dr. Min Shi Prof. Dr. Antonio M Echavarren

European Research Council Established by the European Commission

国家自然科学 基金委员会 National Natural Science Foundation of China

Thank you for your attention!